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Transportation networks play a vital role in modern societies. Structural optimization of a transportation
system under a given set of constraints is an issue of great practical importance. For a general transportation
system whose total cost C is determined by C=�i�jCij�Iij�, with Cij �Iij� being the cost of the flow Iij between
node i and node j, Banavar and co-workers �Phys. Rev. Lett. 84, 4745 �2000�� proved that the optimal network
topology is a tree if Cij � �Iij�� with 0���1. The same conclusion also holds in the more general case where
all the flow costs are strictly concave functions of the flow Iij. To further understand the qualitative difference
between systems with concave and convex cost functions, a loop analysis of transportation cost is performed
in the present paper, and an alternative mathematical proof of the optimality of tree-formed networks is given.
The simple intuitive picture of this proof then leads to an efficient global algorithm for the searching of optimal
structures for a given transportation system with concave cost functions.
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I. INTRODUCTION

Structure, dynamics, and evolution are the three major
themes of current research on complex networks. The struc-
ture or topology of a network affects the robustness �1–3�,
efficiency �4,5�, and sensitivity �6� of dynamical processes
on the network and, consequently, influences the perfor-
mance of the network in fulfilling its intended functions. On
the other hand, various feedback mechanisms exist in com-
plex dynamical systems, which couple network dynamical
processes with the evolution of the network’s architecture. To
understand the global topologies of many real-world com-
plex networks from this viewpoint of function- or dynamics-
driven structural optimization is an ongoing effort �see, e.g.,
Refs. �7–11��. This problem can be divided into two issues:
�i� For a given dynamical process, what are the correspond-
ing optimal network structures? and �ii� how does the net-
work evolve to an optimal structure? The former issue,
which concerns the “fixed points” of the network evolution
dynamics, may serve as a first step in fully characterizing the
complex dynamics-structure coupling in a given networked
system.

Transportation networks are very interesting model sys-
tems to study complex network evolution and optimization
�12–18�. Electricity power grids, river systems, global airline
networks, the internet, and urban road networks can all be
regarded as transportation systems. Flows on the network, be
they electronic currents or email messages, usually are asso-
ciated with certain types of costs. The costs could be energy
dissipation into heat, time delay between sending and receiv-
ing an email message, etc. For a network containing N ver-
tices, the total transportation cost C might be defined accord-
ing to

C��I�� = �
i�j

Cij��Iij�� , �1�

where �I�	�Iij�1� i� j�N� is a general flow pattern; Iij is
the flow between vertex i and vertex j of the network �if
Iij �0 then the flow is from i to j; if Iij �0, it is from j to i;
if Iij =0, then there is no flow between i and j�; Cij��Iij�� is the

cost of the flow Iij between vertex i and j �without loss of
generality, when Iij =0 we can assume Cij 	0�. Notice that
Eq. �1� contains only flow costs along the edges of the net-
work. In some transportation systems there might be addi-
tional costs at the vertices �for example, in internet routing,
congestion mainly takes place at different computer servers
�nodes� of the internet�, but in the present work we do not
consider this complication. The network structure is defined
by all the nonzero edge flows in the flow pattern �I�, and thus
searching for the optimal structure could also be regarded as
searching for the optimal flow pattern. The optimal flow pat-
tern problem, which is at the crossroads of network theory,
complex systems, and economics, has been studied exten-
sively in metabolic networks and other transportation net-
works �see, for example, Refs. �19–22��.

Naturally it is desirable to choose a network architecture
that minimizes the total transportation cost. Empirically, it
has been observed that some transportation systems �such as
electric power grids and urban road networks �23�� typically
contain many loops, while others �notably the global airline
network and river networks �22,24–26�� are treelike, i.e.,
they contain very few loops. To understand this qualitative
distinction in network topologies, Banavar and co-workers
�12� showed that, if in Eq. �1� all the edge costs Cij increase
sublinearly with the flow, i.e., Cij��Iij��� �Iij�� with 0���1
�see Fig. 1�, then the optimal flow network will contain no
loops; on the other hand, if Cij increases with Iij faster than
linearly �Fig. 1�, then the optimal flow network in general
will be loop rich. Reference �12� further mentioned that the
overall topology of a transportation network will be treelike
or loop rich depending only on whether all the flow costs Cij
are strictly concave or strictly convex, respectively. This con-
clusion is intuitively easy to accept: if the flow cost on each
edge increases with the flux faster than linearly �Fig. 1�, it
might be preferable to distribute this flux through multiple
pathways; on the other hand, if the cost increases with the
flux more slowly than linearly �Fig. 1�, the accumulation of
the flux on the optimal pathway might lower the total cost.
The optimality of tree-shaped topologies has also been ad-
dressed in detail in Ref. �21�, which also reviewed other
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developments. Transportation networks with concave cost
functions initially arose in the optimal channel network prob-
lem �19,20,22�. In this context, it has been argued that the
observed fractal forms in many real-world channel networks
have a dynamical origin, i.e., are caused by evolution and
optimization under certain constraints �22�. Furthermore, the
observed allometric scaling of such systems can also be un-
derstood from the viewpoint of transportation optimization
�27,28�.

In the present paper, we reconsider the optimal transpor-
tation network problem and, based on a loop analysis tech-
nique, give an alternative proof of the general statement of
Banavar and co-workers �12�, namely, that the optimal topol-
ogy of a transportation network with all edge flow cost func-
tions strictly concave is a tree. Following the basic math-
ematical idea of this proof, we are able to design an efficient
global algorithm to construct optimal tree-shaped transporta-
tion networks. We also demonstrate by working on some
simple examples that, when all the edge cost functions are
strictly convex, the resulting optimal transportation network
may not necessarily contain loops; whether it is loop rich or
not also depends on the boundary conditions �i.e., input or
output flux at every vertex�.

II. LOOP ANALYSIS ON TRANSPORTATION FLOWS

A. The model system

Consider a transportation system with N vertices �in the
example shown in Fig. 2, N=6 and only those edges with
nonzero fluxes are drawn�. Each vertex j of the system re-
ceives an external flux ij, which can be either positive �flux
in� or negative �flux out�. Since there is no net accumulation
of flux within the system, we have the global condition that

�
j=1

N

ij 	 0, �2�

which means that the total amount of input flux to the system
is exactly balanced by the total amount of output flux. The

external input flux is transported through the network by
internal flows Iij along the edges �i , j� of the system. Since
there is no net accumulation of flux at each vertex of the
network, the internal flows must satisfy the following Kirch-
hoff condition for each vertex:

ij 	 �
k�j

Ijk for i = 1,2, . . . ,N . �3�

In Eq. �3� the internal flux satisfies Ijk=−Ikj.
For a transportation system with specified input and out-

put fluxes �ij : j=1,2 , . . . ,N�, an optimal network structure
corresponds to a flow pattern �I�	�Iij :1� i� j�N� of mini-
mal total cost C��I�� as defined by Eq. �1�, with the constraint
Eq. �3� being observed at all the vertices. In the next subsec-
tion we will investigate the case where all the cost functions
Cij in Eq. �1� are strictly concave, namely,

Cij���Iij
�1�� + �1 − ���Iij

�2���

� �Cij��Iij
�1��� + �1 − ��Cij��Iij

�2��� , �4�

for any 0���1.

B. Optimality of tree-shaped topologies

Let us first consider a transportation network of size n
which is in the shape of a single loop �see Fig. 3�. Let us fix
the flow current In,1 between vertex n and vertex 1 of the
loop system. Then all the other edge fluxes along the loop are
related to In,1 through

Ii,i+1 = In,1 − f i,i+1, �5�

where f i,i+1 is determined by
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I

0

1

2

3
C

ij

ij

FIG. 1. �Color online� Examples of convex and concave cost
functions Cij��Iij�� associated with flow Iij between two vertices i
and j. The function Cij��Iij��= �Iij�2 �dotted line� is convex, while
Cij��Iij��= �Iij�1/2 �dashed line� and Cij��Iij��=ln�1+ �Iij�� �dot-dashed
line� are concave. The thin solid line represents Cij��Iij��= �Iij�.

FIG. 2. A simple transportation system. The system consists of
N=6 vertices, each of them receiving an external flux
ij �j=1,2 , . . . ,N�. �If the external flux on vertex j is an input flow,
then ij is positive; if it is an output flow, then ij is negative.� The
external input fluxes are then distributed in the transportation net-
work by internal flows Iij and finally transported out of the system.
In this figure, the arrow head of an internal edge denotes the direc-
tion of the flow on this edge. The internal flows satisfy the Kirch-
hoff condition Eq. �3� at each vertex.
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f i,i+1 = − fn,1 − �
j=1

i

ij for i = 1,2, . . . ,n − 1 �6�

with fn,1	0. The total flow cost of the loop as defined by Eq.
�1� is therefore a function of In,1, and hereafter we denote this
cost as C�In,1�. The n values of f i,j in Eq. �6� depend on the
external environment �the �ij� values�; some of them may
take identical values. For the convenience of later discussion,
we denote the m�n different values of the f i,j parameters as
�1 ,�2 , . . . ,�m, with �1��2� ¯ ��m.

When the flow current In,1 is restricted to the range of
In,1	�m, the flow cost on each edge of the loop satisfies
Ci,i+1��Ii,i+1��	Ci,i+1��In,1− f i,i+1��	Ci,i+1��m− f i,i+1�, due to
the fact that the flow cost is an increasing function of the
flux. It is obvious that the total flow cost C�In,1� will attain its
minimal value at In,1=�m when In,1 is restricted to In,1	�m.
Similarly it is easy to prove that, if In,1 is restricted to
In,1��1, C�In,1� will attain its minimal value at In,1=�1.
Therefore, to discuss the minimality of the total flux
C�In,1� we need only consider the parameter range of
�1� In,1��m.

Let us assume that �k� In,1��k+1. For the flow cost
Ci,i+1��In,1− f i,i+1��, we know from the concavity condition
Eq. �4� that

Ci,i+1��In,1 − f i,i+1��

	
�k+1Ci,i+1���k − f i,i+1�� − �kCi,i+1���k+1 − f i,i+1��

�k+1 − �k

+ In,1
Ci,i+1���k+1 − f i,i+1�� − Ci,i+1���k − f i,i+1��

�k+1 − �k
, �7�

where the equality holds only when In,1=�k or In,1=�k+1.
Applying this inequality to each edge of the transportation
loop of Fig. 3, for �k� In,1��k+1, we finally obtain the fol-
lowing inequality concerning the total transportation cost:

C�In,1� 	 c1 + c2In,1, �8�

where c1 and c2 are independent of In,1. The equality of Eq.
�8� holds only when In,1=�k or In,1=�k+1. From Eq. �8� we

can conclude the following: �a� if c2�0, then C�In,1� reaches
its local minimum at In,1=�k in the interval of �k� In,1
��k+1; �b� if c2�0, then C�In,1� reaches its local minimal at
In,1=�k+1; and �c� if c2=0, there are two equal local minima
of C�In,1� at In,1=�k and In,1=�k+1.

The above analysis demonstrates that the local minima of
the function C�In,1� can be located only at some or all of the
m points of In,1=�k. Consequently, the global minimal of
C�In,1� can also be located only at some or all of these �k

values. �This fact was demonstrated earlier in Figs. 20 and
22 of Ref. �21�.� Let us assume In,1=�k is a global minimum
of C�In,1�; then from Eq. �5� we know that one of the edge
fluxes, say Ii,i+1, must vanish, i.e., Ii,i+1	0.

We are now ready to prove the general statement of Ref.
�12� that the structure of an optimal transportation network
with strictly concave flow cost functions is a tree. Let us
assume that this statement is not true and there exists at least
one loop of nonzero edge fluxes in the optimal transportation
network. We can then take this loop as a new transportation
system and regard the fluxes in and out of this loop as exter-
nal conditions �the ij values of Fig. 3 now are understood as
the sums of the fluxes between the loop and the remaining
part of the whole transportation system, plus the external
input or output flow at vertex j�. Then, from the above-
mentioned analysis, we know that the flux on one edge of
this loop must be identically zero to minimize cost. This
contradicts our original assumption. Therefore, in the opti-
mal transportation network there must not be any loops. The
proof finishes.

If the edge flow cost functions are concave but not strictly
concave �e.g., Cij��Iij��= �Iij��, then the equality in Eq. �7�
might also hold at intermediate values of �k� In,1��k+1. As
a result, some loop-containing transportation structures
might be equally optimal as loop-free structures when the
total transportation cost is concerned.

When the system’s edge flow cost functions are all strictly
convex, in general the optimal transportation network will
contain loops. However, external conditions are also impor-
tant now. Just as a simple example, for a small transport
system consisting of only three vertices and cost functions
defined as Cij��Iij��=RijIij

2 , we find that, if the external inputs
of the system satisfy i1 / i2=R23/R13, the optimal transporta-
tion network will be a V-like tree with I12=0.

III. FROM THE LOOP ANALYSIS TO AN EFFICIENT
GLOBAL ALGORITHM

The preceding section proved that the optimal transporta-
tion network with strictly concave edge flow cost functions
should be in a tree topology. Inspired by the loop analysis of
Sec. II A, here we introduce a global heuristic algorithm,
called the transient loop relaxation �TLR� algorithm, to actu-
ally construct such an optimal tree structure.

The TLR algorithm works as follows.
�i� Construct a random initial tree network connecting all

the N vertices of a transportation system. Calculate the fluxes
on each edge of the tree.

�ii� In each time interval 
t=1/N, randomly select a pair
of non-neighboring vertices, say vertex i and vertex j, and
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FIG. 3. �Color online� A transportation loop of n=6 vertices. As
there is no net accumulation of currents in the loop, the sum of the
external fluxes to the loop satisfies Eq. �2�.
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link an edge between these two vertices. This will lead to the
formation of a loop. Then remove one edge of this loop and
recalculate the fluxes on all the remaining edges of this loop,
while keeping all the input and output fluxes to the loop
unchanged. The removed edge is chosen to be one of the
edges that makes the total flow cost of the loop attain its
global minimum.

�iii� Repeat step �ii� for a number of times until the total
flow cost never decreases.

�iv� Output the final tree connection pattern.
An alternative way of searching for an optimal transpor-

tation network structure is by Monte Carlo �MC� importance
sampling �similar ideas were also used in earlier studies of
the Dial model of traffic research �29,30� and the single-link-
flip dynamics in searching for the optimal channel network
�21,22�, which is equivalent to the zero-temperature limit of
the MC sampling method�. In this MC algorithm, starting
from a randomly constructed tree, at each interval 
t=1/N
the following updating is proposed: cutting a randomly cho-
sen branch of the tree and grafting it to another randomly
chosen part of the remaining tree. This proposal is accepted
if it leads to a decrease in the total transportation cost; if, on
the other hand, the transportation cost increases with an
amount 
C, the proposal is accepted with probability
exp�−�
C�. Here � is an adjustable parameter of the
algorithm.

We have compared the performance of the TLR and MC
algorithms using two simple artificial systems. Both systems,
A and B, are composed of N vertices. In system A, N−1
of these N vertices have the same external input flow
ij 	1, while in system B, the external flow on vertex
j �j=1,2 , . . . ,N−1� is a quenched random integer uniformly
distributed in the interval �−m ,m� �we set m=10 in our nu-
merical experiment�. In both systems A and B, the edge flow
cost function between a pair of vertices is set to be

Cij��Iij�� = ln�1 + rij�Iij�� , �9�

where rij is a quenched random variable uniformly distrib-
uted in the real interval �0, 1�.

Our simulation results are shown in Fig. 4�a� for the arti-
ficial system A and in Fig. 4�b� for the artificial system B.
Both figures demonstrate that the TLR algorithm is much
faster than the MC algorithm �measured by either the total
number of elementary optimization updates or the absolute
searching time�, and it also finds network connection patterns
with lower total transportation costs than those of the net-
work structures reported by the MC algorithm. Figure 4�b�
also suggests that, when the optimization task becomes more
harder, the gap between the performance of the TLR algo-
rithm and that of the MC algorithm become larger.

IV. CONCLUSION AND DISCUSSION

In summary, in this paper we have given a proof of the
general statement of Ref. �12� that, the optimal structure of a
transportation network with strictly concave edge flow cost
functions should contain no loops. The proof is based on the
mathematical idea of loop analysis, which appears to be
easier to understand compared with the analysis presented in

Ref. �12�. Based on the same loop analysis idea, we have
constructed a global heuristic �transient loop relaxation� al-
gorithm to search for an optimal loop-free structure for a
given transportation system. This TLR algorithm was tested
on two artificial transportation systems and was found to be
superior to an importance-sampling-based Monte Carlo algo-
rithm.

There is an unsolved algorithm issue: Does there exist an
exact algorithm of polynomial complexity to find a global
optimal tree-shaped structure for a given transportation sys-
tem? It is relatively easy to construct a tree-shaped transpor-
tation network that is stable with respect to any single-loop
perturbations �i.e., with the addition of an edge between any
two non-neighboring vertices�. Will such a locally optimal
structure always be a structure with the global minimal total
transportation cost? At the moment, we are unable to give a
concrete answer to this important question.
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FIG. 4. �Color online� Comparison of the performances of the
two optimization algorithms described in the main text, the Monte
Carlo importance sampling algorithm and the TLR �transient loop
relaxation� algorithm. �a� Simulation on the artificial system A de-
scribed in the text. This system contains N=1000 vertices. �b�
Simulation on the artificial system B described in the text. The
system has N=100 vertices. In both �a� and �b� each data point is
the average over 100 different network structural evolution trajec-
tories. One evolution time step in both figures corresponds to N
elementary updates of the algorithm.
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The transient loop relaxation algorithm may also be help-
ful in searching for optimal network structures in transporta-
tion systems in which all the edge cost functions are convex.
In this case, if we assume that the first derivative of
each edge cost function is also continuous, then the cost
function C�In,1� of any loop �as defined in Sec. II A� has
only one minimal point, and this minimal point is located
between two consecutive � values, i.e., �i� In,1��i+1. The

determination of the optimal flow In,1 for this loop is thus
made simpler.
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